Site-specific recombination in Schizosaccharomyces pombe and systematic assembly of a 400kb transgene array in mammalian cells using the integrase of Streptomyces phage ϕBT1

نویسندگان

  • Zhengyao Xu
  • Nicholas C. O. Lee
  • Felix Dafhnis-Calas
  • Sunir Malla
  • Margaret C. M. Smith
  • William R. A. Brown
چکیده

We have established the integrase of the Streptomyces phage phiBT1 as a tool for eukaryotic genome manipulation. We show that the phiBT1 integrase promotes efficient reciprocal and conservative site-specific recombination in vertebrate cells and in Schizosaccharomyces pombe, thus establishing the utility of this protein for genome manipulation in a wide range of eukaryotes. We show that the phiBT1 integrase can be used in conjunction with Cre recombinase to promote the iterative integration of transgenic DNA. We describe five cycles of iterative integration of a candidate mouse centromeric sequence 80 kb in length into a human mini-chromosome within a human-Chinese hamster hybrid cell line. These results establish the generality of the iterative site-specific integration technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a Specific Pseudo attP Site for Phage PhiC31 Integrase in Bovine Genome

Background: PhiC31 integrase system provides a new platform in various felid of research, mainly in gene therapy and creation of transgenic animals. This system enables integration of exogenous DNA into preferred locations in mammalian genomes, which results in robust, long-term expression of the integrated transgene. Objectives: Identification of a novel pseudo attP site. Materials and Methods...

متن کامل

DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination.

Bacteriophage-encoded serine recombinases have great potential in genetic engineering but their catalytic mechanisms have not been adequately studied. Integration of ϕBT1 and ϕC31 via their attachment (att) sites is catalyzed by integrases of the large serine recombinase subtype. Both ϕBT1 and ϕC31 integrases were found to cleave single-substrate att sites without synaptic complex formation, an...

متن کامل

Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination in Streptomyces

Several strategies have been used to clone large DNA fragments directly from bacterial genome. Most of these approaches are based on different site-specific recombination systems consisting of a specialized recombinase and its target sites. In this study, a novel strategy based on phage ϕBT1 integrase-mediated site-specific recombination was developed, and used for simultaneous Streptomyces gen...

متن کامل

Identification of a Specific Pseudo attP Site for Phage phiC3 Integrase in the Genome of Chinese Hamster in CHO-K1 Cell Line

Background: PhiC31 integrase is a DNA site-specific recombinase integrates DNA into the chromosomes between the two sites of attB and attP. Several pseudo attPs have been identified in mammalian genomes with critical features for long-term expression of transgene. In this manuscript, we report a novel intrinsic pseudo attP site named CHOL1 in the Chi...

متن کامل

Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe

Bacteriophages are the source of many valuable tools for molecular biology and genetic manipulation. In Streptomyces, most DNA cloning vectors are based on serine integrase site-specific DNA recombination systems derived from phage. Because of their efficiency and simplicity, serine integrases are also used for diverse synthetic biology applications. Here, we present the genome of a new Strepto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008